Let $(\sigma,\delta)$ be a quasi derivation of a ring $R$ and $M_R$ a right $R$-module. In this paper, we introduce the notion of $(\sigma,\delta)$-skew McCoy modules which extends the notion of McCoy modules and $\sigma$-skew McCoy modules. This concept can be regarded also as a generalization of $(\sigma,\delta)$-skew Armendariz modules. We study some connections between reduced modules, semicommutative modules, $(\sigma,\delta)$-compatible modules and $(\sigma,\delta)$-skew McCoy modules. Furthermore, we will give some results showing that the property of being an $(\sigma,\delta)$-skew McCoy module transfers well from a module $M_R$ to its skew triangular matrix extensions and vice versa.
Louzari, M., & Ben Yakoub, L. (2020). On $(\sigma,\delta)$-skew McCoy modules. Journal of Algebra and Related Topics, 8(2), 23-37. doi: 10.22124/jart.2020.11937.1132
MLA
M. Louzari; L. Ben Yakoub. "On $(\sigma,\delta)$-skew McCoy modules". Journal of Algebra and Related Topics, 8, 2, 2020, 23-37. doi: 10.22124/jart.2020.11937.1132
HARVARD
Louzari, M., Ben Yakoub, L. (2020). 'On $(\sigma,\delta)$-skew McCoy modules', Journal of Algebra and Related Topics, 8(2), pp. 23-37. doi: 10.22124/jart.2020.11937.1132
VANCOUVER
Louzari, M., Ben Yakoub, L. On $(\sigma,\delta)$-skew McCoy modules. Journal of Algebra and Related Topics, 2020; 8(2): 23-37. doi: 10.22124/jart.2020.11937.1132